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Abstract: CORDIC (COrdinate Rotation for Digital Computers) is an ideal candidate for the implementation 

of low power FFT processor, because it uses set of shift-add algorithms which requires less complex hardware 

than the conventional method which is very well suited for VLSI implementation. This work implements FFT on 

a reconfigurable CORDIC only processor array. The paper compares the different CORDIC architectures with 

respect to their area, speed, and power analysis especially in two different major styles iterative and parallel 

structures. Also implemented the CORDIC based 8-point FFT processor. The results show that 2-point purely 

CORDIC based FFT guarantees reduced power consumption  and area than 2-point butterfly structure, when 

compared with previous works from the literature. All the designs were designed in VHDL, simulated using 

ModelSim simulator and Implemented using Synopsis ASIC synthesis tools. 

Keywords: Vector rotation, Iterative CORDIC, Parallel CORDIC, Fast Fourier Transform(FFT),FPGA. 

 

I. Introduction 
CORDIC is an iterative arithmetic computing algorithm capable of evaluating various elementary 

functions using a unified shift-and-add approach. It is a hardware efficient algorithm used for high speed 

computations mostly in digital signal processing applications, which are dominated by microprocessors with 

single cycle multiply-accumulate instructions and special addressing modes.  For a wide variety of DSP 

algorithms, CORDIC based VLSI architectures are very appealing alternatives to the architectures based on 

conventional multiply-and-add hardware. The CORDIC algorithm is found in numerous applications, such as 

pocket calculators,and in mainstream DSP objects, such as adaptive filters, FFTs, DCTs, demodulators, and 

neural networks. They can also be used in high speed satellite communication. 

Jack E. Volder in 1959, derived CORDIC algorithm for the calculation of trigonometric functions [1], 

from the general equations for vector rotation and later generalized by Walther to solve a broader range of 

equations, including the hyperbolic equations, multiplication, division and conversion between binary and 

mixed radix number systems [2] of DSP applications, such as Fourier Transform. The CORDIC algorithm has 

become a widely used approach to elementary function evaluation when the silicon area is a primary constraint. 

The implementation of CORDIC algorithm requires fewer complex hardware than the conventional method and 

is particularly well-suited for applications in which cost (chip gate count has to be minimized) is much more 

important than speed. 

The main characteristic of a signal processing system is having a high complexity and real-time 

operation.FFT acts as the basic conversion operation of frequency domain and time domain. On many 

occasions, the FFT operation is required to be real-time and fast. Therefore, improving the performance of the 

FFT processor, reducing its size and improving the speed become the key point of the design. With the increase 

of FFT size, the performance of FPGA will be reduced [3] because of the storage consumption and resource 

utilization. Butterfly unit is the basic module in FFT structure. It’s important to reduce its area, as well as to 

improve throughput. CORDIC FFT has been shown to be an alternative to implement butterfly operation 

because it can finish multiplication by adders and shifters instead of multipliers and reduce the storage 

consumption, however, large amount of iterations in iterative CORDIC leads to high hardware cost which can 

be overcome by parallel CORDIC structure. With the widely use of FFT, configurable FFT is needed to meet 

different systems. 

 

II. Cordic Algorithm 
There are two ways in CORDIC algorithm for calculation of trigonometric and other related functions 

they are vector rotation mode and vector translation mode. Both methods initialize the angle accumulator with 

the desired angle value. In vector translation mode the coordinates (x0,y0) are rotated until y0 converges to zero. 

This work discuss about the vector rotation mode of CORDIC. Initial vector (x0,y0) starts aligned with the x axis 

and is rotated by a specific angle during every cycle, so that after n iterations, gets the desired angle. The main 

idea consists of taking a unit vector and applying successive rotations, called micro-rotations, until the desired 

angle is reached. The rotating vector is chosen to be unit vector, since after n iterations it will contain sin Өn and 
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cos Өn in its second and first components respectively [4]. If a vector V with coordinates (x, y) is rotated through 

an angle α then a new vector V’ can be obtained with coordinates (x’, y’) where x’ and y’ can be obtained using 

x, y and α by the following method. 

 

   (2.1) 

 

This can be rewritten as: 

  (2.2) 

 

 
Fig 1: Vector rotation. 

 

Where tan αi can be restricted to di 2
-i 

 , so the multiplication can be converted into an arithmetic right shift [5] , 

with  di =± 1. The first factor cos αi =  1/√(1+2
-2i

) .For rotation over an arbitrary angle α, -π/2 ≤ α ≤ π/2 , it can be 

decomposed as : 

    (2.3) 

The cosine term could also be simplified and since cos(α ) is a constant for a fixed number of iterations. This 

iterative rotation can now be expressed as: 

x
(i+1) 

= k
i
 [x

i
-y

i
di2

-i
]     ( 2.4) 

y
(i+1) 

= k
i
 [y

i
-x

i
di2

-i
]       (2.5) 

where, i denotes the number of rotation required to reach the required angle of the required vector, 

k
i
=cos(arctan(2

-i
))  and di =±1 . 

The product of the  k
i
's represents the scale factor  [6] K : 

K= П 
n
i=0 cosαi  = П 

n
i=01/√(1+2

-2i
)      (2.6) 

On each iteration it is necessary to decide whether di=1or di=-1. In order to make that decision, the difference 

between the desired angle and the current angle is used. So a   new variable known as accumulator is defined as  

z
(i+1) 

= z
(i)

 – di I(i).      (2.7) 

where I(i) is the LUT entries. 

The sum of the rotating angles gives the desired angle 

        (2.8) 

 

III. Different Cordic Archetecture 
This section deals with different hardware used for computation of sine and cosine using CORDIC [7]. 

Here iterative rotations of a point around the origin on the x-y plane are considered. In each rotation, the 

coordinates of the rotated point and the remaining angle to be rotated are calculated. Since each rotation is a 

rotation extension the number of rotations for each angle should be a constant independent of operands .So the 

gain factor K becomes a constant. Hardware implementation for CORDIC arithmetic requires three registers for 

x, y and z, two shifter to supply the terms 2
-i
 x and 2

-i
 y to the adder/substractor units and a look up table to store 



A Reconfigurable Cordic Based Fft 

The National Symposium on Antenna Signal Processing & Interdisciplinary Research in                        33 | Page 

Electronics 2017 (ASPIRE-2017) 

the values of αi=tan 
-1

2
-i
. The difactor (-1 and 1) selects the shift operand or its complement. The initial inputs to 

the architectures are X0=1, Y0=0. 

The structure uses a preprocessing unit to converge the input angles to the desired range and a post 

processing unit to fix the sign of outputs depending on the initial angle quadrants. These two blocks are 

inevitable for any application as the input range cannot be predicted always.The CORDIC core can converge 

angles only at the interval [-π/2, π/2] or -90° to +90º. The pre-processing unit takes in angles of any range and 

converges it to the interval [-π/2, π/2]. It keeps record of the quadrant of the input angle of any range. The 

preprocessing unit passes this quadrant information to the post processing unit. The post-processing unit uses 

this quadrant information to fix the sign of outputs. Hence we can generate Sine and Cosine waves, if we give a 

continuous range of angles as input to the CORDIC processor. 

 

1.1 Sequential/Iterative Architecture: 

The CORDIC algorithm requires approximately one shift-add/sub operation for each bit of accuracy. A 

CORDIC core implemented with sequential architectural configuration, is shown in Fig 3.1, which implements 

these shift-add/sub operations serially, using a single shift-add/sub stage and feeding back the output. An 

iterative CORDIC core with N bit width has a minimum latency of N cycles. It takes at least N cycles to 

produce new output.To obtain sine and cosine values of a given angle z0, iterative structure takes the value of 

(x0,y0) as (1,0) in the first clock cycle. From the next clock cycle onwards it takes the feedback values and the 

operation continues till the required output is obtained. The control signal for the input registers is provided by a 

state-machine designed for the purpose. To get an N bit precise output, the structure requires iterating at least N 

times [7]. Hence, it requires a minimum of N clock cycles for required output. 

 

 
Fig 3.1: Iterative CORDIC. 

 

1.2 Parallel/Cascaded CORDIC Architecture: 

This architecture uses multiple instances of Iterative CORDIC structure. Fig 3.2 shows CORDIC core with 

parallel architectural configuration, which implements the shift-add/sub operations in parallel using an array of 

shift-add/sub stages [8]. A parallel CORDIC core with N bit output has a latency of one clock cycle. The 

implementation size of a parallel CORDIC core is directly proportional to the internal precision times the 

number of iterations. Instantiation of blocks must be done N times for an N bit precise output. Unlike in iterative 

CORDIC, all iterations are done parallelly and hence need not wait for N clock cycles. But, the latency of each 

block has an inevitable role in fixing the clock frequency. The frequency of operation for Parallel CORDIC core 

will be lesser than the frequency of operation of iterative CORDIC.  

But this is the case with a single iteration. While dealing with a chain of inputs, the parallel structure proves 

to be more efficient one, since the throughput of parallel structure is much greater than that of iterative. The 

shifters used in this structure are constant shifters, which can be implemented in the wiring, so that the hardware 

can be reduced. 
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Fig: 3.2: Parallel CORDIC. 

 

IV. Fast Fourier Transform 
A Fast Fourier transform (FFT) is an efficient algorithm to compute the Discrete Fourier transform 

(DFT) and it’s inverse. FFTs are of great importance to a wide variety of applications, from digital signal 

processing and solving partial differential equations to algorithms for quick multiplication of large integers. The 

DFT is defined by the formula 

X(k)=  𝑥 𝑛 𝑒𝑁−1
𝑛=0

−(𝑗2𝑛𝑘 /𝑁)
    (4.1)   

 

Evaluating these sums directly would take (N
2
) arithmetical operations. An FFT is an algorithm to 

compute the same result in only (N log N) operations. The evaluation by CORDIC requires only log N 

complexity. Decimation is the process of breaking down something into its constituent parts. Decimation in time 

involves breaking down a signal in the time domain into smaller signals, each of which is easier to handle. 

 

1.3 FFT using Butterfly structure: 

The basic computation using FFT is called butterfly computation which s shown in Fig4.1: 

 

 
Fig: 4.1 Basic butterfly computations in the decimation-in-time. 

 

If the input (time domain) signal, of N points, is x(n) then the frequency response 

X(k) can be calculated by using the DFT. 

X(k)= 𝑥(𝑛)𝑁−1
𝑛=0 W

nk
N       for k=0,1,2,3….N   (4.2) 

                 where      W
nk

N   =𝑒−𝑗2𝜋𝑘𝑛 /𝑁  

 

By using the above butterfly computation technique an 8 point FFT can be represented asa structure 

consisting of three types of blocks. Four 2-point computing blocks, two 4-point computing blocks and one 8-

point computing block shown in Fig:4.2 [11]: 
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Fig 4.2: Fast Fourier Transform 

 

4.2 Fft Using Cordic: 

The Fast Fourier Transform is the most frequently used DSP computing algorithm in modern digital 

signal processing systems. For an N-point DFT calculation, each N-point DFT can be divided into two N/2 point 

sub problems. Recursively applying this procedure will lead to the popular radix-2 FFT algorithm. The basic 

operation for FFT algorithm is Butterfly operation. A basic Decimation In Time FFT operation is: 

A=a + b WN
k      

(4.3) 

B=a -  b  WN
k      

(4.4) 

 

Here a, b, A and B are all complex numbers. So the equation 4.3 and 4.4 requires complex number 

multiplication and complex number addition. The complex number multiplication can be done with m iterations 

for an m bit bit complex number , which takes only one clock cycle if implement using parallel CORDIC 

processors. The complex addition will need just one more clock cycle. For small N, a FFT computation can be 

realized directly with a network of CORDIC processors. 

If the input (time domain) signal, of N points, is x (n) then the frequency response X(k) can be calculated by 

using the FFT. 

X(k)=  𝑥 𝑛 𝑒𝑁−1
𝑛=0

−(𝑗2𝑛𝑘 /𝑁)
 for k=0,1,2,3……………N-1    (4.5)  

 

For a real sample sequence f (n), where n is {0, 1,...., (N-1)} DFT can be defined as:  

 

F(k)= 𝑓(𝑁)𝑁−1
𝑛=0 [cos  

2𝜋

𝑁
 𝑘𝑛 − 𝑗𝑠𝑖𝑛  

2𝜋

𝑁
 𝑘𝑛]                (4.6) 

Where  cos  
2𝜋

𝑁
 𝑘𝑛 is the real part and sin  

2𝜋

𝑁
 𝑘𝑛 is the imaginary part. 

 

Thus equation 4.4 can be rewrite as: 

F(k)= Fr (k) + Fi (k)                                   (4.7) 

The real part in equation 4.7 is the cosine value and the imaginary part is the sine value output from the 

CORDIC processor. 

 

First consider the basic CORDIC algorithm.All the input samples are given a vector rotation by the 

defined angle in each of the transforms. The CORDIC unit can iteratively rotate an input vector  
𝑋𝑖
𝑌𝑖

 by a target 

angle Ө through small steps of elementary angles Өi, to generate an output vector  
𝑋𝑖 + 1
𝑌𝑖 + 1

 . The operation can be 

represented mathematically as: 

 
𝑋𝑖 + 1
𝑌𝑖 + 1

 =  
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

  
𝑋𝑖
𝑌𝑖

         (4.8) 

 

The rotation by a certain angle can be achieved by the summation of some elementary small rotations given by: 

𝜃 =  𝜃𝑖15
𝑖=0  for a 16 bit machine. 

 

To derive CORDIC based FFT,  stop the recursion at n=2 [10]. In this case 

 
𝑋𝑖 + 1
𝑌𝑖 + 1

 =  
 1   1
−1  1

  
𝑋𝑖
𝑌𝑖
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The first matrix can be decomposed into 

 
 1   1
−1  1

  = √2

−√2
  

1

√2

1

√2
1

√2
−

1

√2

           (4.9) 

 

This equals a CORDIC rotating the input values by
𝜋

4
, followed by scaling of √2/−√2 . 

As the CORDIC elements are real valued but the input values are complex valued, the complex CORDIC 

operation has to be separated into real valued operations. If we assume two complex numbers a, b ∈C, the result 

of the complex rotation will be: (t=1/√2) 

      (4.10) 

 

Thus the complex butterfly can be calculated by using two real valued CORDIC, by applying the CORDIC 

operation to the real and imaginary part of the inputs independently. 

                         
                         

Fig 4.3: one real valued cordic 

 

Which results in a complex CORDIC, called type I, by rotating two complex valued vectors by 
𝜋

4
, as shown in 

Fig 4.4. 

                                         

 

                             Fig 4.4 : Internal structure of complex CORDIC type I 

 

The second scaling factor has got a negative sign. So in each stage of the FFT the sign reversed results 

are just combined with other sign reversed results. Therefore a -3
𝜋

4
rotation is applied to the results in these cases 

to project the result from the third quadrant back into the first one. This equals a multiplication of the complex 

input value by –T. The complex CORDIC performing this operation is called type II. 

                        
                         Fig 4.5 :  Internal structure of complex CORDIC type II 

 

The above two structures represent 2 point FFT with CORDIC modules.  

A complete 8-FFT based on CORDIC operations is shown in Figure 4.6. 
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Fig 4.6 : CORDIC based 8-point FFT. 

 

Type I and Type II CORDIC structures are used instead of Butterfly computation. The twiddle factors 

shown are the same as used for the standard FFT. 

The twiddle factor (wy
x  

)is derived as: 

   Wy
x  

=𝑒
−

𝑗2𝜋𝑥

𝑦 .        (4.10) 

 

Here  W4
1 

= 𝑒−90.which can be implemented by simple CORDIC rotation with an angle of 90°.This 

rotation will take an extra one clock cycle. This circuit can be extended up to N point structure. Similarly  W8
1 

 , 

W8
2 
, W8

3 
can be implemented by simple CORDIC rotations with angle 45° , 90°, 135° respectively. 

 

V. Implementation And  Result 
VHDL coding for iterative, parallel and pipelined CORDIC cores were done and simulated in 

Modelsim. Synthesis was done in Xilinx and results were obtained as given in the tables below. 

Selected Device: Xilinx Spartan 3  

 

1.4 Sine and Cosine Waveform generation using complete CORDIC core  

 
Fig 5.1: Sine, Cosine wave generated using CORDIC complete core. 

 

1.5 Cordic 2-Point Fft 

 
Fig 5.2: Cordic Fft 2point Output 
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1.6 Comparison of 8 point FFT with Matlab output 

 

Table 1: Comparison Results Of 8 Point Fft Matlab And Vhdl 

Instants X1 X2 X3 X4 X5 X6 X7 X8 

Input 1 0 1 0 1 0 1 0 

Matlab output 4 0 0 0 4 0 0 0 

VHDL output 3.85 0 0 0 3.85 0 0 0 

 

5.4 Area and Power analysis of different CORDIC structures 

Area, Power and Timing parameters of different architectures are analyzed by using Synopsis ASIC 

synthesis tool. The work done based on 13 micron technology. 

 

5.4.1 Area Analysis 

 

Table II: comparison of area of different cordic structures. 
Parameter Number 

of ports 

 

Number 

of net 

 

Number 

of cells 

 

Number 

of  

references 

 

Combinational 

area 

 

Non-

combinational 

area 

Total  

area 

(nm2) 

Iterative 

CORDIC 

50 224 70 24 1144 500 1644 

Parallel 

CORDIC 

49 1587 1587 111 14925 336 15261 

 

Parallel CORDIC structure is a simple yet bigger structure than iterative CORDIC structure. Due to 

multiple instantiations of consisting blocks, parallel has a higher area (almost eight times) than the iterative 

structure. 

 

5.4.2. Power Analysis 

The table below gives the comparison between the power consumption of parallel and iterative 

CORDIC. While iterative consumes power in µW range, due to its higher hardware complexity, parallel   

consumes power in mW range.  

 

Table ii: comparison of power of different cordic structures. 

Parameter Iterative CORDIC Parallel CORDIC 

Cell Internal Power    

Net Switching Power  

0.00 nW  

104.6365  µW 

0.00 nW 

2.1496 mW 

Total Dynamic Power     104.6365  µW 2.1496 mW 

 

5.4.3 Timing Analysis 

Table Iii: Comparison Of Timing Of Different Cordic Structures 

Point 
Iterative CORDIC Parallel CORDIC 

Incr Path Incr Path 

 

load_reg/CP  (FDS2L)   

 load_reg/Q (FDS2L) 

 done_out (out)                             

 data arrival time 

 

 

0.00 

23.46 

0.00 

--- 

 

0.00r 

23.46 r 

23.46 r 

23.46 

 

0.00 

23.46 

0.00 

--- 

 

0.00r 

23.46 r 

23.46 r 

23.46 

 

From the tables it is evident that parallel CORDIC is much faster than the iterative CORDIC. Though it 

consumes a higher area, Parallel CORDIC structures will be preferable for high speed applications. Hence 

preferred the Parallel CORDIC Structure  for the FFT implementation in this work. 
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1.7 Area and Power analysis of CORDIC FFT 

1.7.1 Device Utilizations Summary 

As the parallel CORDIC modules are instantiated many times in the 8 point FFT structure,  the number 

of slices and LUTs increases, and it is about 20 times as that of parallel CORDIC structure, whereas 14 times 

greater that of 2 point  FFT. 

 

Tableiv: Comparison Of Timing Of Different Cordic Structures 
Parameter No. of   

Slices 

 

No. of 

Slice Flip 

Flops 

 

No. of 4 

input 

LUTs 

 

No. of IOs 

 

No. of 

bonded 

IOBs 

 

No. of GCLKs 

2 point FFT 512 ----- 1024 129 129 1 

8 point FFT 7569 928 14848 513 513 1 

 

1.7.2 Power Analysis 

         

Table V: Comparison Of Power Of Different Cordic Structures 

Parameter Cell Internal 

Power    

Net Switching 

Power  

Total Dynamic 

Power     

2 point FFT 0.00 nW 16.0453  mW 16.0453  mW 

8point FFT 0.00 nW 437.6234 mW 437.6234 mW 

 

1.7.3 Area Analysis   

Table Vi: Comparison Of Area Of Different Cordic Structures 
Parameter Number 

of ports 

 

Number 

of net 

 

Number 

of cells 

 

Number 

of  

references 

 

Combinationa

l area      

 

Non-

combination

al area         

Total 

area(nm2) 

2 point FFT 129 131 

 

2 

 

2 28676 

 

672 29348 

8point FFT 513 

 

1187 

 

17 17 795615 

 

9744 805359 

Since The CORDIC processor get instantiated in the 8 point FFT structure many times the area is nearly 50 

times greater than CORDIC structure. 

 

1.7.4 Comparison with Butterfly structures 

 

Table Vii: Results Of Butterfly And Cordic Structures 
Instance Area Total Dynamic power 

 

Butterfly structure[3] 

 

3345µm 583.4µW 

CORDIC structure 29348nm 16.0453  mW 

          Results shows that the FFT using purely CORDIC structure gives less power and reduced area system, 

when compared with Butterfly structure. 

 

VI. Conclusion 
A tradeoff area/speed will determine the right structural approach to CORDIC FPGA implementation 

for an application. An iterative CORDIC uses lesser hardware than parallel CORDIC, but with the number of 

iterations the shift distance changes, which requires a high fan in and reduce the maximum speed of application. 

Area used by Parallel CORDIC is much higher compared to that of Iterative CORDIC. This difference in 

hardware units has caused an increased power usage by Parallel structures but it is having a gain of high speed. 

This work also discussed about CORDIC based FFT algorithm. This algorithm is best suited for the 

implementation in reconfigurable CORDIC processor fields. The work compares the different CORDIC 

architectures with respect to their area, speed, and data throughput performance especially in three different 

major styles iterative, parallel and pipelined structures.  Then implemented the CORDIC based 2-point FFT and 

8-point FFT processor. The work also compares the performance of 2 point FFT with optimized butterfly 

structure and CORDIC structure. From the obtained results it was possible to note that, the proposed CORDIC 

radix-2 butterfly has been proved to be power efficient and area efficient, when compared with the original one. 
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The future work we intend to implement IFFT, DHT, DCT and CZT calculations using reconfigurable CORDIC 

only modules 
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